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Today’s Objectives

• Motion Models
– Velocity based model (Dead-Reckoning)

– Odometry based model (Wheel Encoders)

• Sensor Models
– Beam model of range finders

– Feature based sensor models
• Camera

• Laser scanner

• Kinect 
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Robot Motion

• Robot motion is inherently uncertain.

• How can we model this uncertainty?
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Dynamic Bayesian Network for Controls, 
States, and Sensations
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Probabilistic Motion Models

• To implement the Bayes Filter, we need the 
transition model p(x | x’, u).

• The term p(x | x’, u) specifies a posterior 
probability, that action u carries the robot 
from x’ to x.

• In this section we will specify, how 
p(x | x’, u) can be modeled based on the 
motion equations.
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Coordinate Systems
• In general the configuration of a robot can be described by 

six parameters.

• Three-dimensional Cartesian coordinates plus three Euler 
angles pitch, roll, and tilt.

• Throughout this section, we consider robots operating on a 
planar surface.

• The state space of such 
systems is three-dimensional 
(x,y,).
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Typical Motion Models
• In practice, one often finds two types of motion 

models:

– Odometry-based

– Velocity-based (dead reckoning)

• Odometry-based models are used when systems are 
equipped with wheel encoders.

• Velocity-based models have to be applied when no 
wheel encoders are given. 

• They calculate the new pose based on the velocities 
and the time elapsed.
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Dead Reckoning

• Derived from “deduced reckoning.”

• Mathematical procedure for determining the 
present location of a vehicle.

• Achieved by calculating the current pose of the 
vehicle based on its velocities and the time 
elapsed.
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Reasons for Motion Errors

bump

ideal case
different wheel
diameters

carpet

and many more …
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Wheel Encoders

• A pair of encoders is used on a single 
shaft. The encoders are aligned so that 
their two data streams are one quarter 
cycle (90 deg.) out of phase.

• Which direction is shaft moving?
– Suppose the encoders were previously 

at the position highlighted by the dark 
band; i.e., Encoder A as 1 and Encoder 
B as 0. The next time the encoders are 
checked:

– If they moved to the position AB=00, 
the position count is incremented

– If they moved to the position AB=11, 
the position count is decremented
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Odometry Model
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The atan2 Function
• Extends the inverse tangent and correctly 

copes with the signs of x and y.
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Noise Model for Odometry

• The measured motion is given by the true 
motion corrupted with noise.
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Typical Distributions for Probabilistic 
Motion Models
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How to Sample from Normal or 
Triangular Distributions?

• Sampling from a normal distribution

• Sampling from a triangular distribution

1. Algorithm sample_normal_distribution(b):

2. return  

1. Algorithm sample_triangular_distribution(b):

2. return  
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Normally/Triangular Distributed 
Samples

106 samples

01 Feb 2016 Dr. -Ing. Ahmad Kamal Nasir



EE565: Mobile Robotics Module 2: Sensor Fusion and State Estimation 

Calculating the Posterior 
Given x, x’, and u
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1. Algorithm motion_model_odometry(x,x’,u)

2.

3.

4.

5.

6.

7.

8.

9.

10.

11. return  p1 · p2 · p3

odometry values (u)

values of interest (x,x’)
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Application

• Repeated application of the sensor model for short 
movements.

• Typical banana-shaped distributions obtained for 2d-
projection of 3d posterior.

x’
u

p(x|u,x’)

u

x’
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Examples (Odometry-Based)
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Velocity-Based Model
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Posterior Probability for Velocity Model
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Examples (velocity based)
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Map-Consistent Motion Model
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Sensors for Mobile Robots

• Contact sensors: Bumpers

• Internal sensors
– Accelerometers (spring-mounted masses)

– Gyroscopes (spinning mass, laser light)

– Compasses, inclinometers (earth magnetic field, gravity)

• Proximity sensors
– Sonar (time of flight)

– Radar (phase and frequency)

– Laser range-finders (triangulation, tof, phase)

– Infrared (intensity)

• Visual sensors: Cameras

• Satellite-based sensors: GPS
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Proximity Sensors

• The central task is to determine P(z|x), i.e., the probability of 
a measurement z given that the robot is at position x.

• Question: Where do the probabilities come from?

• Approach: Let’s try to explain a measurement.
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Beam-based Sensor Model

• Scan z consists of K measurements.

• Individual measurements are independent 
given the robot position.
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Beam-based Sensor Model
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Typical Measurement Errors of an 
Range Measurements

1. Beams reflected by 
obstacles

2. Beams reflected by 
persons / caused 
by crosstalk

3. Random 
measurements

4. Maximum range 
measurements
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Proximity Measurement

• Measurement can be caused by …
– a known obstacle.

– cross-talk.

– an unexpected obstacle (people, furniture, …).

– missing all obstacles (total reflection, glass, …).

• Noise is due to uncertainty …
– in measuring distance to known obstacle.

– in position of known obstacles.

– in position of additional obstacles.

– whether obstacle is missed.
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Beam-based Proximity Model
Measurement noise
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Beam-based Proximity Model
Random measurement Max range
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Resulting Mixture Density
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How can we determine the model parameters?
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Approximation Results

Sonar

Laser

300cm 400cm
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Approximation Results

Laser

Sonar
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Example

z P(z|x,m)
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San Jose Tech Museum

Occupancy grid map Likelihood field
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Landmarks

• Active beacons (e.g., radio, GPS)

• Passive (e.g., visual, retro-reflective)

• Standard approach is triangulation

• Sensor provides

– distance, or

– bearing, or

– distance and bearing.

01 Feb 2016 Dr. -Ing. Ahmad Kamal Nasir



EE565: Mobile Robotics Module 2: Sensor Fusion and State Estimation 

Distance and Bearing
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Probabilistic Model
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Distributions
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Laser Scanner Features (Line)
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2D Geometric Feature based Map
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Kinect Features (Plane)
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Do until DetectedPlanes < 8 and TotalPoints > 

MinPoints

Randomly select (𝑃1, 𝑃2, 𝑃3) from a random circular 

region

Calculate plane from (𝑃1, 𝑃2, 𝑃3)

Transform the Calculate plane from ℝ3 to Hough space

If local maxima is found in Hough space

Delete points corresponding to plane from input points

Calculate plane boundries

Reset Hough space

End if

End Do

𝑝𝑥 ∙ sin 𝜃 ∙ cos 𝜑 + 𝑝𝑦 ∙ sin 𝜃 ∙ sin 𝜑 + 𝑝𝑧 ∙ cos 𝜃 = 𝜌
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3D Geometric Feature based Map
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Summary of Sensor Models
• Explicitly modeling uncertainty in sensing is key to robustness.

• In many cases, good models can be found by the following approach:

1. Determine parametric model of noise free measurement.

2. Analyze sources of noise.

3. Add adequate noise to parameters (eventually mix in densities for noise).

4. Learn (and verify) parameters by fitting model to data.

5. Likelihood of measurement is given by “probabilistically comparing” the actual 
with the expected measurement.

• This holds for motion models as well.

• It is extremely important to be aware of the underlying assumptions!
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Summary

• Motion Models
– Velocity based model (Dead-Reckoning)

– Odometry based model (Wheel Encoders)

• Sensor Models
– Beam model of range finders

– Feature based sensor models
• Camera

• Laser scanner

• Kinect 
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Questions
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